

## Introduction to Analogue Electronics: Potential Divider



## 1 What is a potential divider?

A potential divider is an arrangement of resistors that allow an input voltage to be scaled down. This can be useful to provide reference voltages or to scale the output from a sensor.

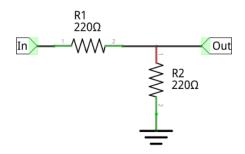



Figure 1: An example potential divider

## 2 Calculations

The voltage at the output  $V_{out}$  is dependent on the input voltage  $V_{in}$  and the ratio of the two resistors R1 and R2.

$$V_{out} = V_{in} \times \frac{R_2}{R_1 + R_2} \tag{1}$$

For the example shown above with a 5V input, This gives:

$$V_{out} = 5V \times \frac{220}{220 + 220} \tag{2}$$

$$V_{out} = 2.5V \tag{3}$$

**Note:** This equation is a simplified version that assumes anything connected to  $V_{out}$  has a much higher resistance than  $R_2$  (i.e. draws very little current)

## 3 Examples and Questions

1. What output voltage would be measured for the following combinations:

(a) 
$$V_{in}=12V$$
,  $R1=1k\Omega$ ,  $R2=4.7k\Omega$ 

(b) 
$$V_{in} = 5V$$
,  $R1 = 1l\Omega$ ,  $R2 = 4.7k\Omega$ 

2. What resistors could you use to get the following output voltages if  $V_{in} = 10V$ ?

(a) 
$$5V$$

(b) 
$$8V$$